

Page 1 sur 11 Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2 Date: 05/01/2021

Beacon description for web site

Beacon description for web site

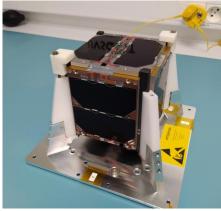
Object:

This technical note describes the data contained in the "beacon" telemetries which will the transmitted by UVSQ-SAT satellite after its launch. The beacon aims to provide data to be used for UVSQ-SAT health monitoring around the Earth. Beacons will be transmitted on 437,020 MHz with BPSK G3RUH modulation (1200 or 9600 bps).

Document status

Action	Name	Function	Date	Signature
Prepared	André-Jean VIEAU	OBSW Engineer	05/01/2020	A Contraction of the second se
Reviewed	Emmanuel BERTRAN	Project Manager	05/01/2020	BERTRAN E.
Approved	Mustapha MEFTAH	Principal Investigator	05/01/2020	J

Beacon description for web site


1. Change record

Version / Revision	Date	Author	Comments
v1r0	16/12/2020	EB	First issue for AMSAT-F data decoder.
v1r1	05/01/2021	AJV	TBD replaced.
v1r2	05/01/2021	EB	Official version for online publication.

2. Introduction

2.1. Applicability

This document is only applicable to UVSQ-SAT satellite.

UVSQ-SAT flight model

2.2. UVSQ-SAT description

UVSQ-SAT is a French nanosatellite designed to observe the Sun and the Earth. It is a demonstrator of space technology under the responsibility of LATMOS. The mission is part of the International Satellite Program in Research and Education (INSPIRE) program: INSPIRE-Sat5

The objectives of the mission are of a scientific, technological and academic nature. It is based on the triptych "Research-Innovation-Training". The main objectives of the UVSQ-SAT satellite are:

- To measure the Infrared (IR) flux emitted by the Earth and the solar flux that it reflects.
- To measure solar irradiance in the Ultraviolet (UV) spectrum.
- To increase the technological maturity of a detector associated with a medical device program.
- To provide space platform with a transponder for Ham-Radio community.

2.3. Reference documents

Provided information are extracted from these documents:

- UVSQSAT-IF-LAT-0048_v1r0 --- TMTC plan (23/11/2020)
- UVSQSAT-DP-LAT-0159 --- UVSQSAT platform datapack

3. Beacon description

3.1. Data encapsulation

The UVSQ-SAT on-board software encapsulates all data in a telemetry structure defined by **CCSDS standard**. Then the UVSQ-SAT radio board encapsulates all telemetries with the **AX25 protocol**.

		pac	ket primary h	leader			packet da	ta field
	packet ID		packet sequence control					
packet version number	packet type	secondary header flag	application process ID	sequence flags	packet sequence count or packet name	packet data length	packet secondary header	user data field
3 bits	1 bit	1 bit	11 bits	2 bits	14 bits	16 bits	variable	variable

CCSDS telemetry structure

3.2. Useful data of the beacon

These data are contained in the "User Data Field" of the CCSDS telemetry structure.

Begi	nning of the beacon		
нк	Data Description	Detail	Size in bits
	SW Mode	MODE_INIT = 0 MODE_DETUMBLING = 1 MODE_STANDBY = 2 MODE_OPERATIONAL = 3 MODE_SAFE = 4 MODE_TRANSPONDER = 5	8
	Last Reset Reason	First start = 0 TC Init received = 0x80 No TC since 4 days = 0x81 Unknown reason = 0xFE	8
atus	Reset order	Order by TC = 0xCA No order = 0	8
Sta	nbReset	Value	8
iOBC Status	FormatSdcard Order	Order to Format SdCard 0 = 0 Order to Format SdCard 1 = 1 Order to NOT Format SdCard 0 = 0xAC Order to NOT Format SdCard 1 = 0xAD	8
	Deploy Antennas system	Nominal = 0 No deploy = 0x11 Deployment Debug = 0xDB	8
	Nb Tm since first start	Value	32
	Nb Tc since first start	Value	32
	Nb Tc Ping since first start	Value	32
	Nb Bad Tc since first start	Value	32
	Nb Tm in Sdcard	Value	32

Page 4 sur 11 Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2

Beacon description for web site

Date: 05/01/2021

	Instantaneous RF reflected power from TX port		12
	(Field valid only during transmission)	-	12
	Instantaneous RF forward power from TX port (Field valid only during transmission)		12
Η̈́		-	12
uTxI	Supply voltage		
Ľ	Total supply current	See "TrxvuTx HK" formula table	12
Trxvi	Transmitter current		12
-	Receiver current		12
	Power amplifier current		12
	Power amplifier temperature		12
	Local oscillator temperature		12

	Instantaneous received signal Doppler offset at the receiver port		12
	Instantaneous received signal strength at the receiver port		12
×	Supply voltage		12
Т	Total supply current		12
uRx	Transmitter current	See "TrxvuRx HK" formula table	12
N N	Receiver current		12
-	Power amplifier current		12
	Power amplifier temperature		12
	Local oscillator temperature		12

	iMTQ system state mode	IDLE = 0	8
		SELFTEST = 1	
		DETUMBLE = 2	
Ŧ	Measure Coil X Current		16
H	Measure Coil Y Current		16
iMTQ	Measure Coil Z Current		16
Ë	Measure Coil X Temperature	See "iMTQ HK" formula table	16
	Measure Coil Y Temperature		16
	Measure Coil Z Temperature		16
	MCU Temperature		16

¥	SIDE A - Ants Temperature		16
Ants H	SIDE A - Ants deployment status	 See "Ants HK" formula table 	16

Page **5** sur **11** Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2 Date: 05/01/2021

Beacon	description	for web site
--------	-------------	--------------

VOLT BRDSUPraw	See "iEPS HK" formula table	16
Voltage of internal board supply.		20
TEMPraw	See "iEPS HK" formula table	16
Measured temp provided by MCU internal sensor.		
VIP_DIST_INPUTraw	See "iEPS HK" formula table	48
Input of $V/I/P$ data taken at the input of the distribution part of the unit in		
raw form. Negative values indicate output flow.		10
VIP_BATT_INPUTraw	See "iEPS HK" formula table	48
Input of $V/I/P$ data taken at the input of the battery part of the unit in raw		
form. Negative values indicate output flow.	Bit n = 1 indicates the channel n is ON	16
stat_obc_on Bitflag field indicating channel-on status for the output bus channels.	(Only 9 firsts bits used)	16
stat_obc_ocf	Bit n = 1 indicates a overcurrent on the	16
Bitflag field indicating overcurrent latch-off fault status for the output bus	channel n	10
channels.	(Only 9 firsts bits used)	
bat stat	Bits from LSB (0) to MSB (15):	16
Bitflag field indicating Battery Pack board status.	$0 \rightarrow$ Battery cell 1 under voltage	
	$1 \rightarrow$ Battery cell 2 under voltage	
	$2 \rightarrow$ Battery cell 3 under voltage	
	3 → Battery cell 4 under voltage	
	4 → Battery cell 1 over voltage	
	5 → Battery cell 2 over voltage	
	$6 \rightarrow$ Battery cell 3 over voltage	
	7 \rightarrow Battery cell 4 over voltage	
	$8 \rightarrow$ Battery cell 1 balancing	
	$9 \rightarrow$ Battery cell 2 balancing	
	$10 \rightarrow$ Battery cell 3 balancing	
	11 \rightarrow Battery cell 4 balancing	
	$12 \rightarrow$ Heaters active	
	13 → (Reserved) 14 → (Reserved)	
	$15 \rightarrow$ Battery pack enabled (Bitflag is	
	set when the battery is connected	
	to the output bus)	
BAT TEMP2raw	See "iEPS HK" formula table	16
Battery pack temperature in between the center battery cells.		
volt_vd0	See "iEPS HK" formula table	16
Voltage of voltage domain 0.		
volt_vd1	See "iEPS HK" formula table	16
Voltage of voltage domain 1.		
volt_vd2	See "iEPS HK" formula table	16
Voltage of voltage domain 2.		
VIP_OBCO0	See "iEPS HK" formula table	48
Output V, I and P of output bus channel 00 = VBATT Permanant		10
VIP_OBC01	See "iEPS HK" formula table	48
V/I/P outputs of output bus channel 01 = 5V Permanant	See "iEPS HK" formula table	10
VIP_OBC02 V/I/P outputs of output bus channel 02 = 3V3 Switchable for Payload	See IEPS IIK TOTTIUIa table	48
	See "iEPS HK" formula table	48
VIP_OBC03 V/I/P outputs of output bus channel 03 = 3V3 Switchable for iMTQ		40
VIP_OBC05	See "iEPS HK" formula table	48
V/I/P outputs of output bus channel 05 = 3V3 Permanant		-70
VIP OBC06	See "iEPS HK" formula table	48
V/I/P outputs of output bus channel 06 = 3V3 Switchable for Payload		
Status stid	Value	8
Status Status System Type Identifier (STID)		
Status_ivid	Value	8
Status Data Cmd : Interface Version Identifier (IVID)		
Status _rc	Value	8
Status Data Cmd : Response code as stated in the header		
Status _bid	Value	8

Page 6 sur 11 Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2 Date: 05/01/2021

Beacon description	for	web	site
--------------------	-----	-----	------

Status Data Cmd : Board Identifier (BID) Status _cmderr	Value	4
Status Data Cmd : CmdErr of Response Status Information (STAT)	Value	-
Status _stat	Value	4
Statustat Status Data Cmd : Response Status Information (STAT)	Vulue	·
MODE	0 = Startup	8
MODE	1 = Nominal	0
	2 = Safety	
	3 = Emergency low power	
CONF	0 = Parameters have not been altered	8
Read/write configuration parameters have been changed by the EPS master	since the last load/save.	0
since the last parameters load/save operation.	1 = Parameters have been altered since	
since the last parameters load/save operation.	the last load/save.	
	<u>Note</u> : At system startup a config load	
	operation is performed, resetting this	
	flag to 0.	0
RESET_CAUSE	0 = Power-on; system returned from an	8
Cause of last reset.	unpowered state (e.g. power cycle).	
	1 = Watchdog; system was reset due to	
	watchdog timeout, caused by a too-	
	long delay between command	
	interactions with the parent system.	
	2 = Commanded; system was reset	
	after having received a reset command.	
	3 = Control system reset; an upset in	
	the EPS control system caused a reset.	
	4 = Emlopo; emergency low power	
	mode was engaged because the input	
	voltage dropped below the threshold.	
UPTIME	Value	32
Uptime in second, since system start expressed in seconds. Will wrap around		
to zero on overflow.		
ERROR	Value	16
First internal error encountered during the system control cycle. Information		
purposes only.		
RC_CNT_PWRON	Value	16
Counter indicating amount of power-on reset occurrences since beginning-of-		
life. Stored in non-volatile memory.		
RC_CNT_WDG	Value	16
Counter indicating amount of watchdog reset occurrences since beginning-of-		
life. Stored in non-volatile memory.		
RC_CNT_CMD	Value	16
Counter indicating amount of commanded reset occurrences since beginning-		
of-life. Stored in non-volatile memory.		
RC_CNT_MCU	Value	16
Counter indicating amount of EPS controller resets that occurred since		
beginning of life.		
RC_CNT_EMLOPO	Value	16
Counter indicating amount of reset occurrences due to emergency low power		
mode since beginning of life.		
PREVCMD ELAPSED	Value	16
Time in second, elapsed between reception of the previous and this		10

Page **7** sur **11** Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2 Date: 05/01/2021

Beacon description for web site

		Total bits size		1600
	Solar panel Temperature 6 (Z+)			32
	Solar panel Temperature 5 (Z-)			32
	Solar panel Temperature 4 (Y+)			32
	Solar panel Temperature 3 (Y-)		See "iOBC HK" formula table	32
=	Solar panel Temperature 2 (X+)			32
n N N	Solar panel Temperature 1 (X-)			32
IOBC HK	Solar panel Photodiode 6 (Z+)			16
¥	Solar panel Photodiode 5 (Z-)			16
	Solar panel Photodiode 4 (Y+)		Kaw value	16
	Solar panel Photodiode 3 (Y-)		Raw value	16
	Solar panel Photodiode 2 (X+)			16
	Solar panel Photodiode 1 (X-)			16

Page **8** sur **11** Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2 Date: 05/01/2021

Beacon description for web site

4. Decoding formulas

TrxvuTx HK:

Parameter	Conversion	Unit	Error
	20 * log10(ADC * 0.00767)	dBm	±1.5 dB
RF reflected power	ADC * ADC * 5.887 10-5	mW	±150 mW
DE femuland neuron	20 * log10(ADC * 0.00767)	dBm	±1.5 dB
RF forward power	ADC * ADC * 5.887 10-5	mW	±150 mW
Power bus voltage	ADC * 0.00488	V	±55 mV
Total current consumption	ADC * 0.16643964	mA	±4 mA
Transmitter current consumption	ADC * 0.16643964	mA	±4 mA
Receiver current consumption	ADC * 0.16643964	mA	±4 mA
Power amplifier current consumption	ADC * 0.16643964	mA	±4 mA
Power amplifier temperature	ADC *-0.07669 + 195.6037	°C	±1 °C
Local oscillator temperature	ADC *-0.07669 + 195.6037	°C	±1 °C

TrxvuRx HK:

Parameter	Conversion	Unit	Error
Received signal Doppler offset	ADC * 13.352-22300	Hz	±1 kHz
Received signal strength	ADC * 0.03 – 152	dBm	±3 dB
Power bus voltage	ADC * 0.00488	V	±55 mV
Total current consumption	ADC * 0.16643964	mA	±4 mA
Transmitter current consumption	ADC * 0.16643964	mA	±4 mA
Receiver current consumption	ADC * 0.16643964	mA	±4 mA
Power amplifier current consumption	ADC * 0.16643964	mA	±4 mA
Power amplifier temperature	ADC *-0.07669 + 195.6037	°C	±1 °C
Local oscillator temperature	ADC *-0.07669 + 195.6037	°C	±1 °C

<mark>iMTQ HK:</mark>

The basic conversion from raw adc counts to engineering units uses a two-step process. First the raw value is converted to a voltage using the following formula:

$$ADC_{volt}[V] = \frac{2.5[V]}{4095} \times ADC_{raw}$$

Second, the ADC voltage is used in a formula specific for each measurement. These formulas are given in Table 3-7.

Table 3-7: Raw to Engineering Value Conversion Formulas

Raw Value	Conversion Formula
Digital/Analog Voltage	$Dig.Volt.[V] = 2 \times ADC_{volt}[V]$
Digital/Analog Current	$Dig. Curr. [V] = ADC_{volt}[V]/(10[V/A])$
Measured Coil Current	$I_x = (ADC_{volt}[V] - 1.03[V])/(2[V/A])$
	$I_y = (ADC_{volt}[V] - 1.03[V])/(2[V/A])$
	$I_z = (ADC_{volt}[V] - 1.03[V])/(0.48[V/A])$
Measured Coil Temp.	$Temp_{x/y/z} = -(ADC_{volt}[V] - 1.567[V])/(0.0081[V/°C])$
MCU Temperature	$Temp_{mcu} = -(ADC_{volt}[V] - 0.680[V])/(0.00225[V/°C])$
	note: IMTQ internal conversion uses factory calibrated values for bias and gain that might deviate from the typical values stated in this formula. Taking reference temperature measurements with the specific IMTQ unit is recommended when only using raw hk and high precision on the MCU temperature measurement is
	required.

Beacon description for web site

Page **9** sur **11** Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2 Date: 05/01/2021

Ants HK:

1) Ants Temperature

- Vout = Vcc/1023 *Raw_data. The nominal value for Vcc is 3.3V.
- See table below for the relationship between Vout and the measured temperature.

Temp	temperatu					
	Vout					
(DegC)	(mV)					
-50	2616					
-49	2607					
-48	2598					
-47	2589					
-46	2580					
-45	2571					
-44	2562					
-43	2553					
-42	2543					
-41	2533					
-40	2522					
-39	2512					
-38	2501					
-37	2491					
-36	2481					
-35	2470					
-34	2460					
-33	2449					
-32	2439					
-31	2429					
-30	2418					
-29	2408					
-28	2397					
-27	2387					
-26	2376					
-25	2366					
-24	2355					
-23	2345					
-22	2334					
-21	2324					
-20	2313					
-19						
	2313					
-19	2313 2302					
-19 Temp	2313 2302 Vout					
-19 Temp (DegC) -18 -17	2313 2302 Vout (mV) 2292 2281					
-19 Temp (DegC) -18 -17 -16	2313 2302 Vout (mV) 2292 2281 2271					
-19 Temp (DegC) -18 -17	2313 2302 Vout (mV) 2292 2281					
-19 Temp (DegC) -18 -17 -16 -15 -14	2313 2302 Vout (mV) 2292 2281 2271 2260 2250					
-19 Temp (DegC) -18 -17 -16 -15 -15 -14 -13	2313 2302 Vout 2292 2281 2271 2260 2250 2239					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11 -11 -10	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218 2218 2207					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11 -10 -9	2313 2302 Vout 2292 2281 2271 2260 2250 2250 2239 2228 2218 2218 2207 2197					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8	2313 2302 Vout 2292 2281 2271 2260 2250 2250 2239 2228 2218 2207 2197 2186					
-19 Temp (DegC) -18 -17 -16 -15 -15 -14 -13 -12 -11 -10 -9 -8 -7	2313 2302 Vout 2292 2281 2271 2260 2250 2250 2239 2228 2218 2207 2197 2197 2186 2175					
-19 Temp (DegC) -18 -17 -16 -15 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218 2207 2197 2186 2175 2164					
-19 Temp (DegC) -18 -17 -16 -15 -15 -14 -13 -12 -11 -10 -9 -8 -7	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218 2207 2197 2186 2175 2164 2154					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218 2207 2197 2186 2175 2164 2175 2164 2154					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -9 -8 -7 -6 -5 -4 -3	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218 2207 2197 2186 2175 2164 2175 2164 2154 2154					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218 2207 2197 2186 2175 2164 2175 2164 2154					
-19 Temp (DegC) -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -9 -8 -7 -6 -5 -4 -3	2313 2302 Vout 2292 2281 2271 2260 2250 2239 2228 2218 2207 2197 2186 2175 2164 2175 2164 2154 2154					

Tomp	Vout
Temp (DegC)	Vout (mV)
1	2089
2	2039
3	2068
4	2057
5	2047
6	2036
7	2025
8	2014
9	2004
10	1993
11	1982
12	1971
13	1961
14	1950
15	1939
16	1928
17	1918 1907
18 19	
20	1896 1885
21	1874
22	1864
23	1853
24	1842
25	1831
26	1820
27	1810
28	1799
29	1788
30	1777
31	1766
32	1756
Temp	Vout
(DegC)	(mV)
33	1745
34	1734
25	
35	1723
36	1723 1712
36	1712 1701
36	1712 1701 1690
36	1712 1701 1690 1679
36 37 38 39 40	1712 1701 1690 1679 1668
36 37 38 39 40 41	1712 1701 1690 1679 1668 1657
36 37 38 39 40 41 42	1712 1701 1690 1679 1668 1657 1646
36 37 38 39 40 41 42 43	1712 1701 1690 1679 1668 1657 1646 1635
36 37 38 39 40 41 42 43 44	1712 1701 1690 1679 1668 1657 1646 1635 1624
36 37 38 39 40 41 42 43 44 45	1712 1701 1690 1679 1668 1657 1646 1635 1624 1613
36 37 38 39 40 41 42 43 44 45 46	1712 1701 1690 1679 1668 1657 1646 1635 1624 1613 1602
36 37 38 39 40 41 42 43 44 45 46 47	1712 1701 1690 1679 1668 1657 1646 1635 1624 1613 1602 1591
36 37 38 39 40 41 42 43 44 45 46 47 48	1712 1701 1690 1679 1668 1657 1646 1635 1624 1613 1602 1591 1580
36 37 38 39 40 41 42 43 44 45 46 47	1712 1701 1690 1679 1668 1657 1646 1635 1624 1613 1602 1591

p betwe	en Vout	and	l th
Temp	Vout	[Те
(DegC)	(mV)		(De
51	1547		101
52	1536		102
53	1525		103
54	1514		104
55	1503		105
56	1492		106
57	1481		107
58	1470		108
59	1459		109
60	1448		110
61	1436		111
62	1425		112
63	1414		113
64	1403		114
65	1391		115
66	1380		116
67	1369		117
68	1358		118
69	1346		119
70	1335		120
71	1324		121
72	1313		122
73	1301		123
74	1290		124
75	1279		125
76	1268		126
77	1257		127
78	1245		128
79	1234		129
80	1223		130
81	1212		131
82	1201		132
Temp	Vout		Те
(DegC)	(mV)		(De
83	1189		133
84	1178		134
85	1167		135
86	1155		136
87	1144		137
88	1133		138
89	1122		139
90	1110		140
91	1099		141
92	1088		142
93	1076		143
94	1065		144
95	1054		145
96	1042		146
97	1031		147
98	1020		148
99	1008		149
100	997		150

Temp	Vout
(DegC)	(mV)
101	986
102	974
103	963
104	951
105	940
106	929
107	917
108	906
109	895
110	883
111	872
112	860
112	849
113	837
115	826
115	
117	814
	803
118	791
119	780
120	769
121	757
122	745
123	734
124	722
125	711
125 126	
125 126 127	711 699 688
125 126 127 128	711 699 688 676
125 126 127 128 129	711 699 688 676 665
125 126 127 128 129 130	711 699 688 676 665 653
125 126 127 128 129 130 131	711 699 688 676 665
125 126 127 128 129 130	711 699 688 676 665 653
125 126 127 128 129 130 131 132	711 699 688 676 665 653 642 630
125 126 127 128 129 130 131 132 Temp	711 699 688 676 665 653 642
125 126 127 128 129 130 131 132 Temp (DegC)	711 699 688 676 665 653 642 630 Vout
125 126 127 128 129 130 131 132 Temp	711 699 688 676 665 653 642 630 Vout (mV)
125 126 127 128 129 130 131 132 Temp (DegC) 133	711 699 688 676 665 653 642 630 Vout (mV) 618
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135	711 699 688 676 653 642 630 Vout (mV) 618 607
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136	711 699 638 676 653 642 630 Vout 618 607 595 584
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137	711 699 638 676 653 642 630 Vout (mV) 618 607 595 584 572
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138	711 699 638 676 653 642 630 Vout 618 607 595 584 572 560
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137	711 699 638 676 653 642 630 Vout 618 607 595 584 572 560 549
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140	711 699 638 676 653 642 630 Vout 630 Vout 618 607 595 584 572 584 572 560 549 537
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141	711 699 638 676 653 642 630 Vout 618 607 595 584 572 584 572 560 549 537 525
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142	711 699 638 653 642 630 Vout 618 607 595 584 572 584 572 560 549 537 525 514
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142 143	711 699 638 676 653 642 630 Vout 618 607 595 584 572 584 572 560 549 537 525 514 502
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142 143 144	711 699 638 653 642 630 Vout 618 607 595 584 572 584 572 584 572 584 572 514 502 490
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142 143 144 145	711 699 688 676 653 642 630 Vout Vout 618 607 595 584 572 584 572 584 572 549 537 525 514 502 490 479
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142 143 144 145 146	711 699 638 645 653 642 630 Vout 01 537 549 537 525 514 502 490 479 467
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	711 699 688 676 653 642 630 Vout Vout 618 607 595 584 572 584 572 584 572 514 502 514 502 490 479 467 455
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	711 699 638 645 653 642 630 Vout 0 0 1 0 1 1 1 1 1 1 1 1
125 126 127 128 129 130 131 132 Temp (DegC) 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	711 699 688 676 653 642 630 Vout Vout 618 607 595 584 572 584 572 584 572 514 502 514 502 490 479 467 455

2) Ants deployment status

	bit 7							bit 0
MSB	A1S	A1T	A1B	0	A2S	A2T	A2B	IG
LSB	A3S	A3T	A3B	INDB	A4S	A4T	A4B	ARM

AxS

1 - This antenna's deployment switch indicates this antenna is NOT deployed

0 - This antenna's deployment switch indicates this antenna is deployed

AxT

The latest deployment system activation for this antenna was stopped because:

1 - a time limit was reached (specified time or safety time limit)

0 - a reason other than reaching a time limit

AxB

1 - This antenna's deployment system is currently active

0 - This antenna's deployment system is currently NOT active

INDB

1 - The antenna system independent burn is currently active.

0 - The antenna system independent burn is currently NOT active.

IG

1 - The antenna system is currently ignoring the antenna deployment switches

 $\operatorname{O-}$ The antenna system is currently NOT ignoring the antenna deployment switches

ARM

1 - The antenna system is currently armed

0 - The antenna system is currently NOT armed

<mark>iEPS HK:</mark>

1) VIP definition

Name	Offset [byte]	Size [byte]	Туре	Unit	Description
VOLTraw	0	2	int16		Channel voltage expressed in raw form, using twos-complement signed format.
CURR _{raw}	2	2	int16		Channel current expressed in raw form, using twos-complement signed format.
POWEraw	4	2	int16		Channel power expressed in raw form, using twos-complement signed format.

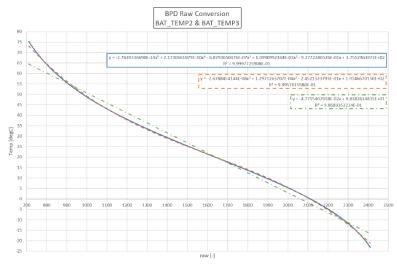
2) Raw to engineering:

The raw data can be converted to engineering values using a bias and a gain value. The full computation has the following form:

$$Eng = G \times (Raw - Bias) = \frac{PreMul}{PostDiv} \times (Raw - Bias)$$

To retain precision while applying integer arithmetic, the conversion is actually implemented with the multiplication applied before the division:

$$Eng = \frac{PreMul \times (Raw - Bias)}{PostDiv}$$



Beacon description for web site

Page **11** sur **11** Ref: UVSQSAT-TN-LAT-0286 Version: 1 Revision: 2 Date: 05/01/2021

Field	Bias	PreMul	PosDiv	Unit	Notes
VOLT_BRDSUP	0	1000	819	1e-3 V	
ТЕМР	<mark>1</mark> 168	220	9	1e-2 °C	MCU factory provided calibration values ¹ could cause slight deviaton in engineering hk data
VIP VOLT	0	125	128	1e-3 V	
VIP CURR	0	3125	10240 20480	1e-3 A	= VIP_INPUT/OUTPUT & VIP_VDx = VIP_OBC
VIP POWE	0	3125	3200 6400	1e-2 W	= VIP_INPUT/OUTPUT & VIP_VDx = VIP_OBC
VOLT_CELLx	512	3	2	1e-3 V	
BAT_TEMP1	1969	75	4	1e-2 °C	
BAT_TEMP2 BAT_TEMP3					Non-linear. See Figure 3-8 and/or Table 3-12.
VOLT_IN_MPPT VOLT_OUT_MPPT	0	2625	128	1e-3 V	
CURR_IN_MPPT CURR_OUT_MPPT	41	625	192	1e-3 A	

Figure 3-8: BPD raw data to temperature relation for BAT_TEMP2 and BAT_TEMP3

The non-linear relation between the raw and temperature of the NTC battery pack temperature sensors is shown in Figure 3-8 and Table 3-12. The blue solid line shows the actual relation. Several polynomial fits are applied to this curve of which the corresponding equations and R^2 values are shown. These fits allow selection of a desired accuracy versus computational performance. Alternatively a static look-up table can be constructed using the 5th degree poly, which minimizes computational burden while maximizing accuracy, at the expense of digital storage space for the look-up table.

Table 3-12: Polynomial Fit to BPD: BAT_TEMP2 and BAT_TEMP3

_	
	Linear fit
	y = -2.7639336690E-14x ⁵ + 2.1730661079E-10x ⁴ - 6.8793650476E-07x ³ + 1.0990992164E-03x ² - 9.2772286526E-01x + 3.7552963972E+02
Γ	Third degree fit
	y = -2.6788454144E-08x ³ + 1.2971263707E-04x ² - 2.4521523793E-01x + 1.9146670150E+02
F	Fifth degree fit
2	y = -4.7715407918E-02x + 9.8382614835E+01

iOBC HK:

Solar panel temperature:

The temperature value can be calculated from the raw value with this formula: Temp (°C) = RawValue / 1024

